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The oscillation of a moderately underexpanded choked jet impinging upon a flat plate 
is investigated both analytically and numerically. The feedback mechanism between 
oscillations of the standoff-shock and the plate is clarified. Pressure waves produced 
by the motion of the shock are reflected by the plate. In addition, oscillations in 
the shock position lead to downstream entropy fluctuations, which generate pressure 
waves as they are convected through the stagnation flow near the plate. A linear 
stability analysis is used to investigate the stability threshold and frequencies of 
oscillation, as a function of jet pressure ratio and nozzle-to-plate distance. The 
analytical predictions are compared to results from a numerical simulation and to 
the experimental data of Powell (1988) and Mmch (1963, 1964). 

1. Introduction 
Sound generation by jets impinging upon various solid obstacles has been studied 

for a long time (see, for example, Hartmann & Trolle 1927; Hartmann 1939; Chanaud 
& Powell 1963; Rockwell & Naudascher 1979) and it is well established that acoustic 
or hydrodynamic feedback can lead to self-excited oscillations at discrete-frequencies. 
Powell (1988) and Henderson & Powell (1993) report an extensive experimental 
investigation of the discrete frequency sound produced by underexpanded choked jets 
impinging on plane surfaces. This jet oscillation and the emitted sound is of practical 
importance for rocket exhausts at launch and for the jets from vertical-takeoff-and- 
landing aircraft. Our motivation for studying this topic arises from the potential 
use of these discrete frequencies in metrological applications (V. M. Weerasinghe & 
L. S. Chung 1993, personal communication) to determine and control the height of a 
machine tool above a workpiece. 

We are interested in sound generated by moderately underexpanded jets impinging 
on flat surfaces. The jet emerges choked from a convergent nozzle, with a total 
pressure po at least a factor 1.89 larger than the ambient pressure p a .  This overpressure 
results in the famous shock cell structures of the jet. For p o l p a  between about 
2.5 and 3.8, the jet is referred to as ‘moderately underexpanded’. In this range, 
a weak near-conical shock wave is formed at the end of each cell due to the 
merging of compressive waves reflected from the jet boundary. This shock is referred 
to the free jet shock. The impingement of this jet normally onto a flat plate 
located in the first few shock cells leads to the formation of a well-defined standoff 
shock wave upstream of the plate. Across the standoff shock, the jet suddenly 
decelerates to subsonic flow and is then deflected by the plate. This subsonic flow 
region downstream of the shock will be referred to the stagnation flow region. 
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FIGURE 1. Flow pattern and coordinate system. From 42.5 onwards, lengths are 
non-dimensionalized with respect to the nozzle diameter, i.e. d = 1. 

The discharge flow then accelerates along the surface of the plate and regains its 
supersonic speed beyond the ‘sonic point’. A sketch of the mean flow field is shown 
in figure 1. 

The experimental investigations by Powell (1988) and Henderson & Powell (1993) 
reveal two important sources of discrete-frequency perturbations in the jet-plate 
geometry. These are standoff shock oscillation and vortex shedding in the jet shear 
layer. Both self-excited oscillations rely on acoustic feedback to sustain the motion. 
The vortex shedding mechanism involves jet disturbances excited at the nozzle exit and 
acoustic feedback between the plate and the nozzle lip (Powell 1988). This self-excited 
oscillation occurs even for subsonic jets (Tam & Ahuja 1990; Ho & Nosseir 1981). 
In this paper, our major concern is the instability associated with the standoff shock 
oscillation. Powell (1988) and Henderson & Powell (1993) observe and clarify several 
characteristics of the resultant flow disturbances. Large self-excited shock oscillations 
are found when the standoff shock lies in the downstream portion of each free jet 
shock cell. The schlieren photographs show flow perturbations to be axisymmetric. 
The main feedback loop in this mechanism involves sound waves reflected between 
the plate and the standoff shock and this influences the frequency of the oscillation. 
However, Henderson & Powell (1993) point out that, at least for some flow conditions, 
some feedback to the nozzle is also required if the oscillation is to be self-sustaining. 
The shock oscillation sound is found to dominate the vortex shedding sound when 
the plate size is less than two jet diameters. Similar self-excited oscillations involving 
shock motion occur when the jet blows onto a closed tube (Hartmann & Trolle 1927). 
Discrete-frequency tones are also emitted from oscillations of the shock structure of 
very highly expanded supersonic impinging jets (see Glaznev 1977; Glaznev, Demin 
& Yakushev 1977). 

March (1964) investigates the shock motion both theoretically and experimentally. 
His theory concentrates on the flow near the central axis which is crucial in the 
feedback mechanism. He approximates the mean flow downstream of the shock by 
an incompressible stagnation flow and investigates the propagation of pressure waves 
generated at the shock through this region and their reflection at the plane surface. 
However, according to this theory, linear flow disturbances are always stable and decay 
exponentially with time. The self-excited shock oscillations observed experimentally 
are not predicted. We believe that an important mechanism is omitted from March’s 
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theory. Oscillations in the shock position lead to downstream entropy fluctuations. 
As these entropy perturbations or ‘hot-spots’ are convected through the stagnation 
flow near the plate, they generate additional pressure waves which can propagate 
upstream and interact with the shock. In 92, we extend Mlzrrch’s analysis to include 
these entropy disturbances as acoustic source terms. We use the extension of Howe 
(1975) to Lighthill’s acoustic analogy. In Howe’s formulation, stagnation enthalpy 
is used as the independent variable and this highlights inhomogeneous entropy 
disturbances as acoustic sources. We include the effect of the entropy disturbances 
and determine the eigenfrequencies as complex solutions of a characteristic equation 
of linear stability theory. Our linear stability theory requires the mean flow field to 
be specified. We use a numerical simulation described in 93 to obtain the required 
details of the mean flow and to test the approximations made in the linear theory. 
The numerical simulation is unsteady and by taking the Fourier transform of the 
flow variables, we can determine the frequency of oscillation. In 94, the frequencies 
predicted by the linearized theory and by the numerical simulation are compared with 
the experimental data of Powell (1988) and March (1963, 1964). The agreement is 
encouraging. 

2. Linear stability theory 
2.1. Meanflow 

A moderately underexpanded jet emerges from a nozzle of diameter d and impinges 
on a flat plate. The flow is axisymmetric. Following March’s model, we assume that 
the main contribution to the feedback is from the region near the jet axis, while the 
shock undergoes a small oscillation in the axial direction. Therefore, the standoff 
shock will be assumed to be normal to the axis at a distance h,(t) from the plate and 
to divide the flow into an upstream supersonic jet and a downstream stagnation flow. 

We choose the coordinate system shown in figure 1. The analytical work is for 
an infinitely large plate D = co. The origin is on the plate, with the positive x-axis 
towards the direction of the incoming flow. The overbar denotes the mean of a flow 
variable evaluated at a fixed position and subscripts 1 and 2 represent quantities 
upstream and downstream of the shock respectively. 

The supersonic flow upstream of the standoff shock is uninfluenced by downstream 
perturbations. The Mach number near the central axis depends only on the non- 
dimensional axial distance from the nozzle lip and on the jet pressure ratio po lpa .  
It can be obtained either by experimental measurement or by a straightforward 
numerical calculation of a steady free jet. Figure 2 shows the variation of Mach 
number along the central axis of a free jet, for p o l p a  = 3.72, calculated by the method 
of characteristics and by the numerical simulation described in 93. Results from the 
two methods are in good agreement and fit the schlieren photographs in Hartmann 
(1939) and Powell (1988). A weak nearly conical free jet shock can be seen near 
the end of the first cell, 1.15d from the nozzle. There is negligible entropy variation 
across this weak shock in agreement with the experimental results of Hartmann (1939, 
figure v.9b). The Mach number decrease in the second cell is more gradual, which is 
supported by Powell’s (1988, figure 3c) optical observation of the free jet. However, 
this smoothing may have been exaggerated by numerical dissipation. 

As in March’s approach, we assume that the Mach number just upstream of the 
standoff shock is high enough to result in a strong shock and a low downstream 
Mach number (&l;~l) .  Then, the mean stagnation flow downstream of the normal 
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FIGURE 2. Variation of Mach number along the central axis of a free jet for p0/pa = 3.72: 
-, calculated by the numerical simulation described in $3; ..., calculated by the method of 
characteristics; - - -, the position of the free jet shock calculated by the method of characteristics; a , unstable standoff shock locations calculated in $2.6. 

standoff shock can be assumed to be nearly incompressible. The mean entropy S 2 ,  

temperature T 2 ,  and sound speed c2 can be regarded as uniform since they have 
only negligible O(G2) spatial variations based on the isentropic relations in this 
region. 

This downstream incompressible mean flow can be approximated by an irrotational 
incompressible stagnation flow (March 1964), which gives zi2 = -ax,& = iar ,  and 
the velocity potential 

(2.1) $2 = i a ( r  -2x ). 

The mean flow velocity just downstream of the shock, z i2(hS) ,  whose mean position 
is at x = h,, is given by the Rankine-Hugoniot relations (see $2.2); a then follows 
from &(is) = -ah,. The numerical simulation described in 93 shows that (2.1) is a 
reasonable approximation to the flow provided the mean shock position is within 0.6d 
of the plate. As discussed in $3, for larger values of h,, a recirculation bubble may 
form near the plate (Kalghatgi & Hunt 1976). A typical numerically calculated flow 
field is shown in figure 7. 

2.2. Oscillating normal shock 
To ensure a causal response and to avoid any ambiguity in the choice of the 
appropriate branch cuts, we assume that the oscillation of the standoff shock starts at 
a fixed time To. Subsequently, it undergoes a small harmonic oscillation of complex 
eigenfrequency o. Our aim is to determine the eigenfrequencies o for which the 
boundary conditions across the shock and on the plate are satisfied. The shock 
position can therefore be expressed as 

2 2 

h,(t) = i;, + leiw('-To)H ( t -  To) 

where h, is the mean shock position, 1 is the small initial amplitude and H denotes 
the Heaviside function. In order to be able to apply the Rankine-Hugoniot relations 
in their usual form, we define Mach numbers at the shock to be positive. Hence, M I ,  
the Mach number just upstream of the shock is related to u1, the local fluid velocity 
in the x-direction, by M I  = -ul/q, where c1 is the local speed of sound. For linear 
shock displacements, we can expand 
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where higher-order terms of 1 have been neglected. Other flow variables, e.g. sound 
speed cl, can be expanded in a similar way. 

The Rankine-Hugoniot relations across the normal shock are to be applied in a 
frame of reference in which the shock is stationary. In this frame: 

The first term in the brackets on the right-hand side is due to shock displacement 
and the second is due to shock velocity. 

Applying the normal shock equations gives, for example, the velocity just down- 
stream of the shock in the moving frame to be 

which is equivalent to 

- + io(M: + 1) leiw(t-")H(t - TO) (2.3) 1 2 dM1 
(y + 1)M: dx 

+ 
in the fixed frame; y is the ratio of specific heat capacities which is about 1.4 for air. 
The velocity at the mean shock position, &, can be determined by expanding 

(t - To), u' t; t )  - Nle'w('-TO)H = U2(6S) + 2( S ?  

after decomposing u2(x, t )  into its mean value &(x) and a linear velocity perturbation 
u;(x,t). The last term on the right-hand side is a correction of order ii2 due to the 
variation of mean flow with position. Substituting for u2(hs, t )  in (2.3) and subtracting 
the mean values, we obtain the velocity perturbation at the mean shock position: 

The entropy and stagnation enthalpy fluctuations at the mean shock position 
just downstream of the shock can be related to the shock displacement 1 and the 
known function Ml(x) in a similar way. The details are given in Appendix A. 
The fluctuations of velocity (2.4), entropy (A3), and total enthalpy (A4) at the 
mean shock position provide three boundary conditions for the stagnation flow 
region. In the next subsection, we have three partial differential equations: entropy 
equation (2.5), Howe's second-order wave equation (2.7), and Crocco's equation (2.8). 
These equations, together with the fourth boundary condition of a rigid plate at 
x = 0, form a complete system for the eigenfrequency o of the linear stability 
theory. 
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2.3. The entropyjluctuation and the solution of the wave equation 
in the stagnation $ow region 

In this subsection, we drop the subscript 2 since only the stagnation flow region is 
involved. The entropy fluctuations generated by the oscillating shock are convected 
through the stagnation flow region. After linearizing and neglecting viscosity and 
heat conductivity, the governing equation for the entropy fluctuation in this region is 

asi as1 as! 
- + ii- + D- = 0. 
at ax  ar 

Solving (2.5) with the boundary condition (A3) and the mean flow in (2.1), we find 

where Y is defined in Appendix A. Note that the Heaviside function ensures that 
entropy fluctuations do not reach the wall (x = 0). 

Howe (1975) gives the exact equation for the stagnation enthalpy B,  in an inviscid 
irrotational flow of an ideal non-conducting gas: 

1 Du 
c2 Dt 

B = -div( T grad S )  + - - - ( T  grad S). 
(”(’”)+--.-- 1 D u  8 

Dt c 2 D t  c2 Dt ax 

In this equation, D / D t  is the material derivative involving the total fluid velocity u 
and c is the local speed of sound. After linearizing and ignoring the O ( @ )  terms, we 
obtain a simple wave equation which applies throughout the stagnation flow region: 

($ (g + u .  V )  - V2) B’ = -T--SS’, - a 2  

ax2 

where S’ is given in (2.6). The linear operator on the left-hand side of (2.7) describes 
the propagation of sound waves in the mean flow field 1. The right-hand side identifies 
entropy fluctuations in the stagnation region as an additional sound source. Just the 
homogeneous equation form of (2.7) is considered in Merrch‘s theory. 

The boundary condition on the plate at x = 0 follows from Crocco’s equation for 
an irrotational flow: 

au 
at 

V B  = -- + T V S ,  

which after linearizing simplifies to 

Imposing the hard-wall boundary conditions u = 0 on x = 0 and noting that (2.6) 
states 8S/ax  = 0 on x = 0, we obtain the boundary condition on the wall: 
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The wave equation (2.7) is greatly simplified by employing a Taylor transformation 
(Taylor 1978), which defines new variables 

4 x = x, F = t + - ,  
c2 

where 6 is the mean flow velocity potential (2.1). Then 

a a a a + _ - - - I .  l a 6  a 
at I, a A  and - - __ - =-  

ax, I t  - ax, IF c2 ax i  ay 

This gives the transformed equation 

(2.10) 

whose accuracy is still correct to O ( @ ) ,  and where V i ,  and g ( X ,  9) are respectively 
the Laplacian operator and the known source in the new coordinate. The boundary 
condition is then 

at X = 0. (2.11) 
dB’ - = o  ax 

With the aid of the three-dimensional Green’s function, the solution to (2.10) 
satisfying (2.11) can be easily expressed as 

) dY‘d5‘  (2.12) 

where Y’ is the mean volume of the stagnation flow region, and X” = (-X’, R’, 0‘) 
is the image point of X’ = (X’ ,  R’, 0’). 

The first two terms on the right-hand side of (2.12) are upstream and downstream 
travelling free sound waves. The integral represents the acoustic waves generated by 
the inhomogeneous entropy source. Merrch‘s analysis includes the free sound waves, 
but neglects the acoustic waves due to the entropy inhomogeneity. 

We are particularly interested in the wave field near the central axis. For R = 0 (= r) 
in (2.12), the integral over 0’ can be readily evaluated. Then reverting to the original 
coordinate, we obtain 

6(F(.F - F’ ) - ( X  - XI()  d ( Z ( F  - 5’ ) - IX - XI))  
( X  - x” 1 I X - X ’ ]  

+ 

where 

d(c(t  - t’) - (a/2z)(x2 - xf2) - (a/4?)rf2 - ((x - x ’ ) ~  + r’2)1/2) 
((x - x ’ ) ~  + rr2)1I2 

x 1 r‘dr‘ 

Normal modes are described by letting t - To -+ 03, i.e. by examining the system 
response a sufficiently long time after the initial excitation. Then the integrals in 
(2.13) can be calculated. The tedious routine procedures are relegated to Appendix B, 
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Tx i o  

Tx u 

4 2  - - - (s'(6,, t + x/c - q(x))  - S'(ti,, t - x/z - q(x) ) )  

where q(x)  = h , / E +  ;u(x2 - &/c2 and g(o) is eiw"(io/a)1~2r(-1/2,iw/u). r ( a , b )  
is the incomplete Gamma function and the branch cut is chosen along the positive 
imaginary axis of w. Non-oscillatory, monotonically decaying transient terms have 
been discarded and xf defined in Appendix B is exponentially small since t - TO -+ co. 

The function P describes sound waves travelling in the stagnation region and being 
reflected in the plane wall. It will be determined in $2.4 by the boundary conditions at 
the shock position. The third term on the right-hand side of (2.14) is the contribution 
to B'(x,t)  from the local entropy fluctuations. The fourth term results from the time 
integral of entropy gradient at the mean shock position ks. This term is of great 
importance for low-frequency modes and decays exponentially as 1 0 )  increases. The 
fifth term is of U(fi2) from the entropy fluctuation at As. Finally, the last term, which 
is again of (I(&&), is the integral of the entropy contribution in the stagnation flow 
region at the retarded time. 

2.4. The derivation of the characteristic equation 
The total enthalpy fluctuations in the stagnation flow region are described by (2.14) 
and the unsteady velocity then follows from (2.8). Equations (2.4) and (A4) provide 
two boundary conditions for these fluctuations at the mean shock position. After 
eliminating the function I? between these two equations, we will finally obtain an 
equation for the complex eigenfrequency o. This is the characteristic equation of 
linear stability theory and its roots can be readily determined numerically. The details 
are as follows. 

The total enthalpy fluctuation (2.14) at x = 6, is 

where 
1 eioS/r(_io~s/c)(j-l) + e-i"i;./~((io6,/z)(j-1) 

9 ( w )  = - c 
2 (iw/a + l)(io/a + 2).  . . (iw/a + j )  

* 

J=1 

The evaluation of the integral over the stagnation region to obtain 9(0) is described 
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in Appendix C. We abbreviate S;(h,, t ) ,  B;(t?,, t ) ,  u;(h,, t )  to S;(t), B;(t) ,  and u;(t), 
respectively, and these are all given in terms of the shock displacement 1 by (2.4), 
(A 3), and (A4); C is the sound speed in the stagnation flow region. 

Substituting (2.14) into (2.8), we can easily obtain the velocity fluctuation at the 
mean shock position: 

c 

G!C 

q0)s; ( t  - +) . (2.16) 

Equations (2.15) and (2.16) may be rearranged into equations for the travelling 

Tat?, -- 
2 3  

wave P.  They are 

(2.17) 

and 

(2.18) 

where the terms 9 ( t )  and g l ( t )  describe the entropy terms, with 

and 

+-  Ta (i <- -  ii) (s;(t) - s; ( t  - 4)) - 2 (s;(t) + s; (r - $)) 
4c 

Equation (2.17) relates F to flow parameters at the shock at an earlier time, and 
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so describes the effect of waves reflected from the rigid surface. On the other hand, 
through (2.18), I' is expressed in terms of later flow perturbations. Equations (2.17) 
and (2.18) can be recast to give I' at a common reference time z, by substituting 
t = z - h , / C ,  t = z + h, /E  into (2.17) and (2.18), respectively. Then 

and 

All the terms on the right-hand sides of (2.19) and (2.20) are proportional to 
shock displacement 1 (see (2.4), (A 3), (A 4)). 

By equating (2.19) and (2.20), we get F(w) l  = 0 where 

1 
1 

F ( w )  = -{  right-hand side of (2.19) - right-hand side of (2.20)). 

This only allows non-zero oscillation amplitude 1 at discrete frequencies w which 
roots of the characteristic equation 

the 

are 

9 ( w )  = 0. (2.21) 

The roots and stability margins of the characteristic equation are investigated in the 
next two subsections. 

2.5. Roots of the characteristic equation 
It is convenient to non-dimensionalize the physical quantities on the diameter of the 
nozzle lip and the stagnation sound speed. From now on, the symbols w, h,, x,,,, 
etc. denote the non-dimensional quantities. The characteristic equation (2.21) involves 
the Mach number and its slope just upstream of the mean shock position. For a 
particular mean shock position h, and the nozzle-to-plate distance x,,,, we can use the 
free jet axial Mach number function (shown in figure 2) at a distance x,,, - h, from 
the nozzle to determine the Mach number and its slope just upstream of the standoff 
shock. Once the mean flow is known, the eigenfrequencies of linear oscillations can be 
determined by searching for the roots of (2.21) in the complex frequency domain. For 
example, for the case x,, = 1.30, h, = 0.56, and p o / p a  = 3.72, for which f i l  = 2.13, 
and d&ll/dx = -1.69, figure 3 shows that there are isolated roots scattered in the 
search region. These modes are numbered according to the magnitude of their real 
frequencies. In this case, all of the modes obtained are stable and can be classified 
into two families by the different ranges of their damping rate. The family with 
smaller damping rates (the odd modes) are likely to be observed experimentally. In 
each family, the modes with higher frequencies tend to be more stable. Figure 4 shows 
the case for which x,,, = 1.30, E ,  = 0.31, p o / p ,  = 3.72, leading to = 2.60, and 
d&lI/dx = -0.90. In this case, an unstable mode is found, which grows exponentially 
according to linear theory. 

In this section we have arbitrarily chosen two values of h, for the examples in 
figures 3 and 4 to illustrate that the characteristic equation has both stable and 
unstable roots (although the first case is close to the shock position observed for the 
jet impinging on a plane surface and the latter case is = 0.31 has been observed when 
the jet impinges on a small plate of diameter D / d  = 0.3, Mmch 1963). In $2.6, we 
map out the stability margins as a function of hs and xres, and in 94, we combine 
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Re (0) 
FIGURE 3. Roots of the characteristic equation for the case xreS = 1.3, A, = 0.56, p ~ / p ,  = 3.72, 
&fl = 2.13, d&fl/dx = -1.69 . -, Contour lines of Re(B) = 0; ..., contour lines of I m ( B )  = 0; 0, 

roots of 9 = 0. 

Re (0) 

FIGURE 4. Roots of the characteristic equation for the case x,,, = 1.30, A, = 0.31, p o / p a  = 3.72, 
fil = 2.60, dMl/dx = -0.90. -, Contour lines of Re(9 )  = 0; . . ., contour lines of I m ( 9 )  = 0; 0, 
roots of B = 0. 

our stability map with particular values of h, that occur in a range of practical 
configurations to compare with experimental results. 

2.6. Stability margin diagram 
In this subsection, we are only concerned with the least-stable mode (mode 1). As 
we saw in 52.5, the complex eigenfrequency o can be determined for specified values 
of hs and x,,,. By varying h, and xreS over a specific range, we can therefore obtain 
the contours of the imaginary part of w, as shown in figure 5. In this figure, x,,, 
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xres 

FIGURE 5. Stability margin diagram for the case p o / p a  = 3.72. -, Contour lines of Im(w) of the 
least-stable mode; -, neutral stability curves; - - - , the free jet shock and a boundary between 
unstable and stable flow. 

XE7S 

FIGURE 6.  Mach number contour lines just upstream of the standoff shock at the given hS and 
x,, for the case p o l p a  = 3.72. 
--- , the free jet shock and a boundary between unstable and stable flow. 

-, Mach number contour lines; -, neutral stability curves; 

varies roughly over the first two shock cells. Two unstable strips are found, where 
the damping rate is negative. For values of h, and x,,, in these strips, linear theory 
predicts that the unstable mode grows exponentially, but in practice it would be 
limited by nonlinear mechanisms. It may result in the finite-amplitude bistable shock 
motion observed by Powell (1988). 

The Mach number in front of the shock is shown as a function of is and xres 
in figure 6.  The neutral stability curves have been superimposed in this figure. By 
comparing the stability margins with the Mach contour lines, we find that the standoff 
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shock is unstable when it lies in the downstream portion of each free jet shock cell. 
This is in excellent agreement with Powell’s (1988) observation of a repetitive pattern 
of unstable regions. The maximum growth rate occurs when the standoff shock lies 
just upstream of where a conical shock would form in the free jet. Positions at which 
the standoff shock is unstable are illustrated as a function of upstream Mach number 
in figure 2. 

Figures 5 and 6 summarize how the standoff shock position influences its stability. 
However, to predict the eigenfrequency for a particular plate and nozzle-to-plate 
distance x,,,, we need to know the mean shock position h,. This could be deter- 
mined experimentally or from approximate integral methods (Gummer & Hunt 1971 ; 
Shapiro 1954). Instead, we use results from a numerical simulation, which is described 
in the next section. 

3. Numerical simulation and results 
The numerical simulation uses Denton’s second-order-explicit finite volume code 

for unsteady axisymmetric inviscid flow (Denton 1993). We use 110 and 85 grid 
points in the radial and axial directions respectively. This mesh size varies slightly in 
different cases. The sizes of mesh elements increase gradually with their distance from 
the jet boundary. The finest spatial resolution is 0.010 by 0.023 and the time step has 
to be less than 0.010 to satisfy the Courant-Friedrichs-Lewy condition, which states 
that the maximum time step has to be less than the minimum time for sound to travel 
through the smallest calculation elements. Experimental observations of the standoff 
shock oscillation suggest that the non-dimensionalized frequency of disturbances is 
roughly 2. This unsteadiness can be sufficiently resolved by the mesh we use. 

The boundary conditions applied are sonic conditions, with known stagnation 
pressure and temperature at the nozzle exit, together with rigid wall boundary 
conditions over the rest of the nozzle exit plane and on the plate. Conditions 
of constant static pressure and no incoming mass flux are applied at calculation 
boundaries far from the jet. We first use this numerical scheme to obtain the details 
of the mean flow required in the linear stability analysis described in $2. Secondly, we 
investigate the finite-amplitude oscillations that develop in this unsteady simulation. 
Checks were made to ensure that the frequency of oscillation is independent of the 
size of the computational domain. The outer radius %, of the computational domain 
was increased from 4.0 to 7.0, with negligible effect on the frequency of oscillation. 
Moreover, we find that the frequency of oscillation agrees well with that predicted 
from linear theory. This gives us confidence in the numerical results and we use 
the simulation to investigate the effect of replacing the infinite plate by different 
downstream reflectors. 

When this jet impinges on an infinite plate a strong standoff shock is formed. 
A typical instantaneous flow field near the plate at x,, = 1.3 and po/p ,  = 3.72 is 
illustrated in figure 7. The mean standoff shock position is E ,  = 0.55. By rerunning 
the code for different values of x,,,, we can obtain the mean shock wave positions is 
as functions of x,,, as shown in figure 8. These functions will be used with the linear 
theory of $2 to find eigenfrequencies of shock oscillation. Merrch’s experimental data 
are shown for comparison in figure 8. We find a reasonable agreement and a similar 
trend of the function in the overlap region. Having established that the numerical 
calculation agrees well with experimental data, we can use the detailed information 
it gives to check the assumptions made about the mean flow in the development of 
the linear stability theory in $2. Note that velocity vectors in figure 7 show that the 
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FIGURE 7. Mach number contours and velocity field of the stagnation flow region at t = 178, 
x,, = 1.3 and po/py = 3.72. -, Mach number contour line; +, velocity vector. The computational 
domain extends to I = 5.0 
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FIGURE 8. Mean shock position functions for p o / p ,  = 3.72: -, infinite plate; - - - , D / d  = 1.0; 
-1 - ,  D / d  = 2.0; . . ., D / d  = 3.0. f.. .+, Msrch’s experimental data for D / d  = 1.0 and p o / p ,  = 3.83. 
0, Recirculating bubbles appear near to the plate. 

stagnation flow has no recirculation bubble. The mean velocity in the stagnation flow 
region (figure 9) also shows a good agreement with the incompressible stagnation flow 
approximation. We also find a supersonic discharge flow region which extends from 
the edge of the standoff shock and is known as a supersonic near-wall jet (Carling 8z 
Hunt 1974). 

Figure 10 shows the pressure fluctuations calculated in the numerical simulation 
for p ~ / p ,  = 3.72 and x,,, = 1.3. Results are shown for three positions: on the jet 
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centreline on the plate, halfway between the standoff shock and the nozzle, and at 
a point outside the jet. These pressures are normalized by ambient pressure. The 
fluctuations at the latter two points are much smaller than those at the origin showing 
that the major oscillations occur near the jet centreline in the stagnation flow region. 
The frequency of oscillation can be determined from a Fourier transform of these 
time histories and the spectrum of the pressure fluctuation on the plate is shown in 
figure 10. There is a strong peak near a non-dimensional frequency of 2. The mode 
involves variation in axial position of the shock as in the linear theory. By varying 
xreS, we obtain the range of frequencies of shock oscillation shown in figure 11. 

In 54, we will compare these frequencies with experimental results. The experiments 
are for jets impinging on plates of small or moderate diameter D. We have modified 
the numerical scheme to consider a jet incident on the end plate of a rigid cylinder 
of diameter D as sketched as in figure 1. We can again obtain the mean shock 
position as a function of nozzle-to-plate distance xreS and the plate size D as 
in figure 8. We have also marked the cases where the calculated stagnation flow 
has a recirculation bubble. Similar recirculation bubbles have been observed when 
a uniform jet impinges on a flat surface (Kalghatgi & Hunt 1976). According to 
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FIGURE 11. Oscillation frequency and comparison with experimental data at p o l p a  = 3.72. (a) Real 
part of the complex frequency versus xres; (b)  damping rate versus xreS. -, . . ., Theoretical value; 
- - -, Powell's experimental data; o, numerical simulated modes for infinite plate; *, numerical 
simulated modes for D/d = 1.0. 

Kalghatgi & Hunt's experimental data and their criterion, we note that there, as in 
the numerical results, the recirculation bubble seems to occur when the shock-to-plate 
distance exceeds a critical value. Msrch (1973) uses a two-dimensional composite jet 
model to determine the margin of appearance of the stagnation bubble and terms it 
a 'blocking phenomenon'. For our case, the bubbles appear roughly when the mean 
shock position is further than 0.6 from the plate. The oscillation frequencies for the 
case D = 1.0 versus xreS are also shown in figure 11. It is clear that plate size does 
not have a major effect on the frequency of shock oscillation. 

4. Comparison with experimental data 
In this section, we present results from the theoretical linear stability analysis, 

and their comparison with the numerical simulation and with experimental data 
of Powell (1988) and Msrch (1964). We need to justify applying a theory for a 
jet impinging on an infinite plane surface to experiments with plates of modest 
diameters less than 4, particularly as the experimenters find jets incident on large 
plates to be more susceptible to oscillations associated with vortex shedding from the 
nozzle than to shock-induced oscillations (Powell 1988 ; Henderson & Powell 1993). 
However, the experimental results show that when the standoff shock oscillation 
mode is detectable, its frequency is virtually independent of plate size D (see, for 
example, Powell 1988, figure 11). The same conclusion can be drawn from the results 
of the numerical simulation summarized in figure 11. Further evidence that the 
plate edges do not have a major effect on the frequency is the similarity between 
Msrch's lowest-frequency mode for plates with sharp corners and Powell's for plates 
with chamfered edges (see Powell 1988, figure 5). Our theoretical model (and that 
of Msrch) therefore emphasizes the flow near the jet axis as being crucial in the 
feedback processes that control the frequency of shock oscillation. The only way 
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x, 
FIGURE 12. Oscillation frequency and comparison with experimental data at p ~ / p ,  = 3.83. (a) Real 
part of the complex frequency versus xres; ( b )  damping rate versus xres. -, . . ., Theoretical value; 
_ _ _  , Mrarch's experimental data for D / d  = 0.58; - .  -, Mrarch's experimental data for D / d  = 1.0. 

this local flow is influenced by plate size is through the modest changes it induces 
in is as shown in figure 8. We therefore believe it entirely appropriate to compare 
the theoretical predictions for frequency with experimental data for plates of modest 
size. 

First, we investigate the case of Powell (1988) with p o / p ,  = 3.72. The mean shock 
position is is determined as a function of xreS from the numerical simulation (see 
D / d  = 1.0 curve in figure 8). The frequencies and damping rates of the lowest three 
modes versus xreS are then obtained by solving the characteristic equation. The results 
are shown in figure 11. We find that the experimental data and the frequency of 
oscillation in the numerical simulations are consistent with the lowest eigenfrequency, 
which is also the least-stable mode. The higher-frequency modes, with higher damping 
rates, are probably too weak to be detected in Powell's experiment. The second 
example for comparison is Msrch's data (Msrch 1963, 1964). The pressure ratio is 
p o / p n  = 3.83 and two different sizes of plate are used. The mean shock position and 
the Mach number just upstream are both given in his papers (1963, 1964). Using 
these data directly, we get the theoretical results shown in figure 12. Three of our 
theoretical branches (modes 1, 3 and 4) agree with measured frequencies. As expected, 
the branch with the lowest frequency has the largest oscillation amplitude. However, 
our linear theory is not able to explain why, for the smaller plate case the experimental 
frequency jumps from one branch to another at certain x,,,, nor the appearance of 
the higher mode. This might involve other external feedback mechanisms which 
are not included in this theory. For example, for the smaller plate, disturbances 
from the edge of the plate might have an upstream influence and affect the mode 
selection. 

For the two sets of parameters investigated here, all five modes are stable, although 
the odd modes are only very lightly damped. Self-excited oscillations involving just 
the standoff shock and the stagnation region cannot be sustained at these flow 
conditions. However, the response of the shock and stagnation flow to external 
forcing is highly resonant, with a large response to any excitation near the odd 
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FIGURE 13. The gain function, l / S ( w ) ,  describing the response to forcing for x,,, = 1.3, is = 0.56, 
p o / p o  = 3.72, M, = 2.13, d&fl/dx = -1.69. Arrows show the real part of eigenfrequencies of modes 
1 and 3. 

eigenfrequencies. Without going in the detail of the forcing mechanism, we note 
that the response of forcing at a real frequency o is proportional to l/.F(o). This 
function is plotted as a function of o in figure 13 for x,, = 1.30, 6, = 0.56, 
po/pa = 3.72, MI = 2.13, and dMl/dx = -1.69. It has strong peaks near the real 
part of the first and third eigenfrequencies, demonstrating how strong the response 
is to excitation near these frequencies. This mechanism may be relevant to the 
observation of Henderson & Powell (1993) that, at least for some flow conditions, 
some form of feedback from the nozzle is required to sustain the shock oscillation, 
even though the frequency of oscillation is controlled by feedback between the 
shock and the plate. We expect that this feedback may involve the interaction 
of acoustic waves with the jet expansion at the nozzle lip, leading to disturbances 
which propagate downstream in the supersonic jet to sustain the standoff shock 
oscillation. 

5. Conclusion 
A linear stability theory has been developed to give physical insight into the self- 

excited oscillations that can occur when a moderately underexpanded jet impinges 
on a plate. Oscillations of the standoff shock generate linear pressure and entropy 
disturbances in the stagnation flow region between the shock and the plate. We 
find that the entropy fluctuations are a significant acoustic source. As the entropy 
inhomogeneities are decelerated through the stagnation flow, they generate additional 
pressure waves which propagate upstream and enhance the shock oscillation. Using 
the known Mach number variation along the axis of a supersonic jet, which is a 
function of pressure ratio p o l p a ,  we find a characteristic equation for the eigenfre- 
quencies of the shock oscillation mode. There are two families of isolated roots and 
the lowest-frequency mode is the least stable. Its frequency varies between about 
1 and 2, where we have non-dimensionalized lengths on the diameter of the nozzle 
exit and velocity on the stagnation sound speed. We determine the threshold at 
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which this mode becomes unstable as a function of x,,,, the nozzle-to-plate distance, 
and is, the standoff distance of the shock from the plate. Instability occurs roughly 
when the standoff shock is in the downstream section of each shock cell of the 
underexpanded free jet. This agrees well with experimental observations (Powell 
1988). 

We have used a numerical simulation to obtain the mean flow parameters needed 
in the linear stability analysis and to check some of the assumptions made in 
this simplified theory. For a specified mean shock position, we can solve for the 
frequencies and damping rates of the oscillation modes by determining the roots of 
the characteristic equation. We find that the predicted frequencies agree well with the 
experimental data of Powell and Marrch and with results of the numerical simulation. 

The authors wish to express their sincere gratitude to Professor J. D. Denton of 
the Whittle Laboratory, Cambridge University Engineering Department for providing 
the program used in the numerical simulation, and for his help and advice with its 
implementation. This work was carried out while one of the authors (C.-Y. K.) was 
in receipt of an ORS award from the Committee of Vice-Chancellors and Principals. 

Appendix A. Perturbations behind the oscillating normal shock 

the temperature and entropy downstream of the shock are 
Using the relative Mach number (2.2) in the normal shock relations, we find that 

and 

(A 2) 

where R is the idea gas constant, and we have assumed the flow to be isentropic 
upstream of the shock. 

The physical variable used in the theory is the specific stagnation enthalpy B ,  which 
is equal to c,T + ;Iul2, where T is the the flow temperature and u is the fluid velocity. 
After substitution for T2 and u2 from ( A l )  and (2.3) respectively, the total enthalpy 
at the shock position is found to be 

after linearization. 
Extrapolating from the instantaneous shock position to h,, as described in $2.2, we 
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can expand the entropy change at the mean shock position as 
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as2 - 
ax Sz(h,, t )  - S1 = (S2(hs)  - S1) + S;(&,, t )  + ---(h,)lei"(f-To)H(t - To). 

The last term vanishes since s2(x) is a constant with negligible O(i'@) spatial variance. 
The entropy variation across the standoff shock greatly exceeds that in either the 
upstream supersonic jet or near the axis in the downstream stagnation flow region. 
The entropy fluctuation at the mean shock position then follows from substitution 
for S2(hs, t )  - S1 in (A 2): 

$(hS, t )  = YleiW(t-To)H(t - T ~ ) ,  (A 3 )  

where 
dM1 (M?  - 1)2 

Y = 4yR (-&- + ;) 
&(2 + (y - l)U;)(2yM: - y + 1)' 

Similarly, we can obtain the total enthalpy fluctuation : 

Equations (A 3) ,  (A 4) and (2.4) relate perturbations in entropy, stagnation enthalpy, 
and velocity at the mean shock position to the shock displacement lei"(t-To)H(t - TO). 

Appendix B. Integration of forced wave components 

becomes 
Carrying out the integral over r', the forced wave component Q(x, t )  of (2.13) 

a 
H('(t - t') - -(x2 - X I 2 )  - Ix - x'l) 

1 
X 

(1 + a(t - t'))'/2 2c 

where O(fiz) terms have been omitted. Substituting for the entropy fluctuation from 
(2.6) and integrating (B 1) with respect to x' by parts gives Q(x, t )  = Ql(x, t )  + Q ~ ( x ,  t ) ,  
where 

with 

iw 1 a d = -H(t' - To) + - A ( t '  - T0))H(F( t  - t') - -(x2 - q) - (L, - x)), 
( a h ,  ah, 2c 

a 
' ( t  - t ' )  - -(x2 - xt2) - Ix - x'I 

22 
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Equation ( B 2 )  describes the integral of the historical contribution of the entropy 
gradient at the mean shock position and can be rearranged to show that 

5% 1 
2 ah, 

2 a i ,  2z  

H(C(t - To) - (./2z)(x2 - i t )  - (is - x)) 
(1 + a(t - To))'/2 Qi(x ,  t )  = - - -91 

- 

- _- Tc  y i e - i m T o z  la dq qP3l2 

a 2 -2  1 -  
x exp i o  -__ + t - -(x - h,)  - y ( h s  - X) [ ( ",' 2 3  C 

- _- 
2 ah, a 

where 

a -  a2 2 -2 
0 = 1 + ~ ( t  - To) - x(hs  - x) - -(x - h,).  

C 2 E 2  

The last term in Q l ( x , t )  has the same argument, t + x / c -  iax2/C2, as the downstream 
propagating free wave in (2.13) and, hence, can be incorporated into the yet to be 
determined function P ( t  + x / c  - $xx2/Z2)  describing this travelling wave component. 
Similarly, the image term Q1(-x,  t )  contributes a corresponding term into the upstream 
propagating wave. The remaining integral in the non-propagating terms, Ql(x ,  t),  can 
be expressed in terms of the incomplete Gamma function r ( a , b ) :  

T z  1 
2 ah, 

H@(t - To) - (a /2Z)(x2  - if) - (hs - x)) 
(1 + a(t - To))'/2 

Ql(X, t )  = ---H 

T x  i o  

x ( r  (-:,;) -r  (-;,; 

where r(a, b)  = JT ta-'ePt dt. The branch cut in (B4) is chosen to be along the 
positive imaginary axis of o in order to give roots symmetric about Re(o) = 0. 
Letting t - TO + co, the expression for Q l ( x ,  t )  in ( B 4 )  simplifies to 

T x  i o  
4 ah, 

x exp iw t - TO - -(x - h,)  - =(h,  - 

Ql(x, t )  = -- -91 eiwla(io/a)'/2r 

a 2 -2 1 -  [ ( 2 3  C 

The last two decaying terms are from the starting contribution at t' = TO. 
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Evaluating the t’ integral in (B 3) gives 

‘3 (ax’ /Z+sgn(x-x’)) 
( 1 + ( u p ) (  x - x’))1/2 2 

Q2(x, t )  = -YZeioTo 1 dx’ 

C 

a 

To continue further we need to determine where the argument of the generalized 
functions H and 6 vanishes, i.e. we have to find the position xf of the front of the 
entropy-related fluctuations. xf satisfies 

giving 

) + O ( M 3 ,  
ax 

which decays exponentially as t - TO + co. Equation (B 6) can be rearranged to show 
that 

Equation (B 7) can hence be integrated by parts to give 

Incorporating the downstream propagating terms into the travelling component, we 
get 
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C l -  )I 
--91 T (1 - 

(1 + e) exp [-io ($+:)I, 
T a x  a Y I  exp i o  t - TO - -(x2 - 6;) - z(hs - x) [ ( 2 3  

-- 
42 

2 
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as t - To + co. The first term is from the local entropy fluctuation and the second 
term is the summation of the entropy contribution in the stagnation flow region at 
the retarded time. The third and fourth terms are from contributions of entropy 
fluctuations at the mean shock position is and at the front x f  (fi: 0) respectively. 

We can manipulate the image term Q(-x,t) in the same way and incorporate 
the travelling wave component into the upstream propagating term. This gives the 
additional non-propagating components, say &( -x, t).  Hence, the non-propagating 
terms of (2.13) induced by the entropy fluctuation are the summation of (B5), (B8) 
and & -x, t )  which is 

&(x, t )  + &2(x, t )  + &(-x, t )  = T Y 1  ( - ;: ) iw/a eio(t-To) 

T x  i o  91 (eiW/a (9) 1/2 r (-;, :)) 
4 ah, 

a 

a 2 -2 1 -  
-291 (exp [io ( t  - TO - -(x - h,) - :(h, - 

4E 2E2 C 

-fr.i[dx’(;)i”’a 4c (exp[io(t-To--(x 2 3  a 2  -x’~)-:Jx- C x’l)] 

C 

a 
+exp io t - TO - -(x2 - x”) - 

- - ~ l ( a ( t  -  TO))-'/^ + --Yle-a(‘-TO) 

[ ( 2 3  

T c  T a i ,  
ah, 2E 

as t - To + co. We are interested in oscillations of frequency o and so the terms in 
the last line describing monotonically decaying transients can be discarded for large 
t - To. 

Appendix C. Integration of volumetric entropy contribution 
We aim to evaluate 

-_ “ Y l  l,“ dx‘ (2) 
4E 
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which is equivalent to 

where x j  = h,e-'(t-To)(l + ah,/E). 
Using the formula 

yaeby dy = LU 
we can carry out the integration in (C 1) 

----ylexp[io(t-.-:)] 4z 
Tah, eioL/"(-iwh,/Z)(j-l) + e-iwl;,/? (icoh,/c)(j-') $ ( i o / a  + l)(io/a + 2). . . (io/a + j )  

(-l)n((iohs/z)n + (-icohs/E)n) 
(iw/a + l)(io/a + 2). . . (ico/a + n) 

- -  
Tabs ygPle-ioh,/? e-a(t-To)j(l + ioi,/z + j ah,/~)((--ioh,/E)j-' + (iohs/c)j-l) 

( i o / a  + l)(io/a + 2). . . (iw/a + j )  - 2  +--- 
j=l 

4c 

Letting n + co, the second term can be neglected and the last term can be truncated 
since t - To -, co. 

Hence, the final result of the integral (C 1) is 

where 
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